Powered By Blogger

jueves, 21 de abril de 2011

ENERGIA EOLICA

La energía eólica es una forma indirecta de energía solar, ya que son las diferencias de temperaturas y de presiones en la atmósfera, provocadas por la absorción de la radiación solar, las que ponen al viento en movimiento.


 
Hace miles de años que se utiliza la energía del viento (eólica). Los persas fueron los pioneros de los molinos de viento. La energía eólica- o el aerogenerador de hoy- ya no se parece tanto al modelo de estos antepasados que la utilizaban para moler trigo. Esta energía eólica recibe su nombre de Aeolus (griego antiguo Αολος / Aiolos), nombre del dios del viento en la antigua Grecia.


El aerogenerador es un generador de corriente eléctrica a partir de la energía cinética del viento. Esta imagen, por ejemplo, corresponde a un campo de aerogeneradores en Pozo Izquierdo, Gran Canaria.

jueves, 10 de marzo de 2011

CENTRAL HIDROELECTRICA

Una central hidroeléctrica es aquella que utiliza energia hidraulica para la generacion de energia electrica. Son el resultado actual de la evolución de los antiguos molinos que aprovechaban la corriente de los ríos para mover una rueda.
En general, estas centrales aprovechan la energía potencial que posee la masa de agua de un cauce natural en virtud de un desnivel, también conocido como salto geodésico. El agua en su caída entre dos niveles del cauce se hace pasar por una turbina hidráulica la cual transmite la energía a un generador donde se transforma en energía eléctrica

Represas Hidroeléctricas – El futuro de la humanidad, la energía eléctrica gratuita

Para generar energía hidroeléctrica un país necesita unicamente un rio, en este se pueden construir una o varias megarepresas hidroeléctricas.
El agua que corre por el rio mueve las turbinas dentro de la cortina de la represa y genera millones de watts (megavatios, megawatts), continùa su camino por el rio, si mas adelante hay otra represa vuelve a generar energía.
Si un país tiene un solo rio puede ser independiente (de las petroleras) para generar energía eléctrica.
Lo curioso es que en américa latina cada pais tiene varios rios y debido a la corrupción se depende de la energía termoeléctrica (usan derivados del petróleo para generar energía sucia).
Cada hogar consume unos 200 kilovatios al mes (varia de 100 a 400 kilowatts segun cada hogar), cada hora un hogar consume unos 0.27 kilovatios.
Por lo tanto en una ciudad de un millón de habitantes con 5 personas por hogar, es decir con 200 mil hograres y cada hogar consume 200 kilovatios (0.2 megavatios), consumen en total 40 millones de kilovatios al mes, es decir 40 mil megawatts al mes, es lo mismo que decir 40 gigavatios.
Por lo tanto la demanda eléctrica de un millon de habitantes (sin contar las fábricas) puede satisfacerse al 100 % si se cuenta con una represa que genere 55 megavatios/hora (55megas*24horas*30dias).
Lo que si consume en las ciudades son las fábricas, por lo que son quienes mas energía deben pagar, no se debe cobrar mas a los pobres si los millonarios son quienes consumen.
Si un país tiene una represa hidroeléctrica que genera 500 megavatios de energía hidroeléctrica cada hora…
En un mes esta represa genera 360 mil megavatios, 360 gigavatios (500x24horasx30dias)…
Por lo tanto puede satisfacer el consumo de un país con 9 millones de personas (con energía en sus casas)…
Si las fábricas extrangeras consumen mucho, pues que ellas paguen la energía térmica o que creen su propia represa hidroeléctrica.

jueves, 3 de marzo de 2011

LA DESTRUCCION DE LA CAPA DE OZONO

Los Efectos que el hombre ha ejercido en la Atmósfera, a partir de la Revolución Industrial, han significado drásticos y perceptibles cambios en su composición, amenazando todo el Biosistema.
El ozono, ubicado en la Estratosfera como capa entre 15 y 30 km. de altura, se acumula en la atmósfera en grandes cantidades, y se convierte en un escudo que nos protege de la radiación ultravioleta que proviene del sol haciendo posible la vida en la Tierra.

El Gas Ozono está en un continuo proceso de formación y destrucción, ya que al poseer tres átomos de Oxígeno que se liberan a la atmósfera siempre uno de ellos se une a una molécula de Oxígeno y forma nuevamente Ozono, este último, después de absorber rayos UV se divide formando una molécula de oxígeno y liberando un átomo de oxígeno, proceso cíclico que se repite constantemente.


Durante los últimos años, la capa de ozono, se ha debilitado formando un verdadero agujero, que en algunos sectores ha producido disminuciones de hasta el 60% en la cantidad de ozono estratosférico. Este desgaste se debe al uso de un componente químico producido por el hombre, los clorofluorocarburos (CFC) de productos, como los aerosoles, disolventes, propelentes y refrigerantes. La acción de estos gases en la Estratosfera libera átomos de Cl a través de la radiación UV sobre sus enlaces moleculares; cada átomo de Cl destruye miles de moléculas de Ozono transformándolas en moléculas de dioxígeno. Otros compuestos que afectan la capa de ozono por contener cloro (Cl) son el metilcloroformo (solvente), el tetracloruro de carbono (un químico industrial) y sustancias que contengan bromo (Br), como los halones, utilizados para extinguir el fuego.



El nivel excesivo de la radiación UV que llegue a la superficie de la Tierra puede perjudicar la salud de las personas, en patologías como: aparición de cáncer de piel; lesiones en los ojos que producen: cataratas, la deformación del cristalino o la presbicia; y deterioro del sistema inmunológico, influyendo de forma negativa sobre la molécula de ADN donde se ven afectadas las defensas del cuerpo, las cuales generan un aumento en las enfermedades infecciosas, que pueden aumentar tanto en frecuencia como en severidad, tales como: sarampión,herpes,malaria,lepra,varicela.


 A nivel de fauna, el aumento de los rayos UV daña a los ecosistemas acuáticos se ha visto que el daño en algunas zonas de aguas claras alcanza hasta 20 mts. de profundidad, siendo su consecuencia la pérdida de fitoplancton (base de la cadena alimenticia marina). Esto es muy perjudicial, porque una disminución en la cantidad de organismos puede provocar una reducción de los peces y afectar el resto de la cadena trófica. Así, por ejemplo, bajo el agujero de la capa ozono en la Antártica la productividad de este conjunto de organismos acuáticos disminuyó entre el 6 y el 12%. También, estos rayos provocan problemas en peces, crustáceos y anfibios durante sus primeras etapas de desarrollo, afectando sus capacidades de reproducción, por lo tanto reduciendo el tamaño de la población. Además, al escasear el fitoplancton (que son organismos fotosintéticos) los océanos perderían su potencial como recolector de CO2, contribuyendo aún más al efecto invernadero. A nivel de flora, está provocando importantes cambios en la composición química de varias especies de plantas (arroz y soya) y árboles (coníferas). Además, está alterando el crecimiento de algunas plantas e impidiendo su proceso de fotosíntesis. Así, por ejemplo, se está viendo afectado el rendimiento de las cosechas.

martes, 8 de febrero de 2011

EL AGUA EN EL PLANETA

El agua es un recurso indespensable para sustentar la vida. Cada persona puede incorporar hábitos cotidianos que ayuden a conservar este recurso, es con este enfoque que el 5 de octubre se celebra el Día Interamericano del Agua.
Cada gota de agua potable, que se vierte sin ser utilizada, se incorpora a la corriente de aguas servidas, convirtiéndose en un líquido de desecho que requiere tratamiento. Como los tratamientos no son 100% efectivos para eliminar los contaminantes presentes en los desechos, existe algún tipo de deterioro en la calidad del agua.debemos acostumbrarnos a algunos habitos,
“Un uso adecuado del agua contribuye a reducir la contaminación y los riesgos sobre la salud y el medio ambiente”.

Por qué ahorrar agua

El ahorro es una buena costumbre. Todos coincidimos en este tema cuando nos referimos al dinero, especialmente porque consideramos que con ello tendremos cierta seguridad para nosotros y nuestra familia. El dinero es un bien que nos da tranquilidad para superar diversas situaciones, de la misma manera, el agua es un bien que representa una garantía para toda la humanidad y para las diversas formas de vida.
"Cuando los pozos lleguen a estar secos entonces sabremos el valor del agua", Benjamín Franklin

Cómo ahorrar agua en el consumo personal y el hogar

  • Lavado de manos, dientes y al afeitarse: no dejes correr el agua, abrí la canilla sólo cuando sea necesario.
  • Uso del inodoro: incorporá un sistema de descarga de agua que permita regular según la necesidad.
  • Baño y lavado del cabello: cerrá el agua cuando te estás enjabonando.
  • Lavado de platos: primero enjaboná todo y luego enjuagá. No dejes correr el agua.
  • Lavado de ropa: siempre tratá de usar el lavarropas a su máxima capacidad, esto ahorra agua y energía. Cuando laves a mano, mojá la ropa, frotá ligeramente y luego enjuaga. No dejes correr innecesariamente el agua.
  • Cocina: al preparar alimentos, usá el agua necesaria y no desperdicies los caldos.
  • Limpieza de hogar: utilizá un balde para medir y controlar la cantidad de agua para el lavado del piso u otros lugares. No emplees mangueras porque se gasta el agua innecesariamente.
  • Riego del jardín: tratá de no emplear agua potable, sino reusar la que se haya usado para otros fines. Es mejor regar al atardecer sólo con el agua necesaria o instalar un sistema de riesgo por goteo, también rediseñar los jardines con plantas que requieran poca agua.
  • Lavado de autos: hay que eliminar la costumbre de usar mangueras, es preferible usar un trapo húmedo y una cantidad controlada de agua en un balde.
Mantener las instalaciones
Además de los buenos hábitos personales es necesario realizar un mantenimiento periódico de las instalaciones de agua o sanitarias. Hay que verificar el buen estado de las cañerías y tuberías, las duchas e inodoros, los depósitos y llaves de agua y otros elementos relacionados.

De esta manera se puede ahorrar mucha agua y evitar su desperdicio. La reparación simple de una llave de paso o el sellado de las uniones de una cañería reducen pérdidas considerables de agua y de dinero.
Es una responsabilidad general atender el mantenimiento y evitar que se produzcan deterioros por manejos inrresponsables.

martes, 4 de enero de 2011

INGENIERIA MECANICA DE FLUIDOS

Ingeniería Mecánica de Fluidos


Descripción y Perfil Profesional:

La carrera de Ingeniería Mecánica de Fluidos está orientada a la proyección, diseño, construcción y operación de estructuras hidráulicas (bocatomas, desarenadores, canales, etc.), portuarias, así como a diversas actividades con máquinas hidráulicas y térmicas. Al final de sus estudios, el profesional estará capacitado para:



• Diseñar, planificar, operar y evaluar sistemas y obras de aprovechamiento de los recursos hídricos para el área rural y urbana.

• Ofrecer servicios de mantenimiento y reparación de máquinas y equipos de fuerza hidráulica y neumáticos.



Campo Ocupacional:



Desarrollar diversas actividades en el área de hidráulica general en los sectores públicos y privados. Asesor industrial en el diseño de turbomaquinaria. Asesoramiento especializado, actividad empresarial, docencia e investigación.



 
 
 
la mecanica de fluidos es por su parte un acarera muy imprescindible para el desarrolo humano
 
                                                        MECANICA DE FLUIDOS
 
INTRODUCCIÓN


Mecánica de fluidos, es la parte de la física que se ocupa de la acción de los fluidos en reposo o en movimiento, así como de las aplicaciones y mecanismos de ingeniería que utilizan fluidos. La mecánica de fluidos es fundamental en campos tan diversos como la aeronáutica, la ingeniería química, civil e industrial, la meteorología, las construcciones navales y la oceanografía.

La mecánica de fluidos puede subdividirse en dos campos principales: la estática de fluidos, o hidrostática, que se ocupa de los fluidos en reposo, y la dinámica de fluidos, que trata de los fluidos en movimiento. El término de hidrodinámica se aplica al flujo de líquidos o al flujo de los gases a baja velocidad, en el que puede considerarse que el gas es esencialmente incompresible. La aerodinámica, o dinámica de gases, se ocupa del comportamiento de los gases cuando los cambios de velocidad y presión son lo suficientemente grandes para que sea necesario incluir los efectos de la compresibilidad.

Entre las aplicaciones de la mecánica de fluidos están la propulsión a chorro, las turbinas, los compresores las bombas. La hidráulica estudia la utilización en ingeniería de la presión del agua o del aceite.

PROPIEDADES DE LOS FLUIDOS

1.1 ANTECENDENTES HISTORICOS

La mecánica de fluidos podría aparecer solamente como un nombre nuevo para una ciencia antigua en origen y realizaciones, pero es más que eso, corresponde a un enfoque especial para estudiar el comportamiento de los líquidos y los gases.

Los principios básicos de l movimiento de los fluidos se desarrollaron lentamente a través de los siglos XVI al XIX como resultado del trabajo de muchos científicos como Da Vinci, Galileo, Torricelli, Pascal, Bernoulli, Euler, Navier, Stokes, Kelvin, Reynolds y otros que hicieron interesantes aportes teóricos a lo que se denomina hidrodinámica. También en el campo de hidráulica experimental hicieron importantes contribuciones Chezy, Ventura, Hagen, Manning, Pouseuille, Darcy, Froude y otros, fundamentalmente durante el siglo XIX.

Hacia finales del siglo XIX la hidrodinámica y la hidráulica experimental presentaban una cierta rivalidad. Por una parte, la hidrodinámica clásica aplicaba con rigurosidad principios matemáticospara modelar el comportamiento de los fluidos, para lo cual debía recurrir a simplificar las propiedades de estos. Así se hablaba de un fluido real. Esto hizo que los resultados no fueran siempre aplicables a casos reales. Por otra parte, la hidráulica experimental acumulaba antecedentes sobre el comportamiento de fluidos reales sin dar importancia a al formulación de una teoría rigurosa.

La Mecánica de Fluidos moderna aparece a principios del siglo XX como un esfuerzo para unir estas dos tendencias: experimental y científica. Generalmente se reconoce como fundador de la mecánica de fluidos modela al alemán L. Prandtl (1875-1953). Esta es una ciencia relativamente joven ala cual aun hoy se están haciendo importantes contribuciones.

La referencia que da el autor Vernard J.K acerca de los antecedentes de la mecánica de fluidos como un estudio científico datan según sus investigaciones de la antigua Grecia en el año 420 a.C. hechos por Tales de Mileto y Anaximenes; que después continuarían los romanos y se siguiera continuando el estudio hasta el siglo XVII.

1.2 CONCEPTOS BASICOS

1.2.1 DEFINICION DE FLUIDO

Para clasificar a los materiales que se encuentran en la naturalezase pueden utilizar diversos criterios. Desde el punto de vista de la ingeniería, uno de los más interesantes lo constituye aquel que considera el comportamiento de los elementos frente a situaciones especiales. De acuerdo a ello se definen los estados básicos de sólido, plástico, fluidos y plasma. De aquí la de definición que nos interesa es la de fluidos, la cual se clasifica en líquidos y gases.

La clasificación de fluidos mencionada depende fundamentalmente del estadoy no del material en si. De esta forma lo que define al fluido es su comportamiento y no su composición. Entre las propiedades que diferencian el estado de la materia, la que permite una mejor clasificaron sobre le punto de vista mecánico es la que dice la relación con la forma en que reacciona el material cuando se le aplica una fuerza.

Los fluidos reaccionan de una manera característica a las fuerzas. Si se compara lo que ocurre a un sólido y a un fluido cuando son sometidos a un esfuerzo de corte o tangencial se tienen reacciones características que se pueden verificar experimentalmente y que permiten diferenciarlos.

Con base al comportamiento que desarrollan los fluidos se definen de la siguiente manera: "Fluido es una sustancia que se deforma continuamente, o sea se escurre, cuando esta sometido a un esfuerzo de corte o tangencial". De esta definición se desprende que un fluido en reposo no soporta ningún esfuerzo de corte.

Para ver el gráfico seleccione la opción "Descargar" del menú superior

Fig. 1-Comportamiento de un fluido sometido a una fuerza de corte o tangencial.


1.3 PROPIEDADES DE LOS FLUIDOS

Los fluidos, como todos los materiales, tienen propiedades físicas que permiten caracterizar y cuantificar su comportamiento así como distinguirlos de otros. Algunas de estas propiedades son exclusivas de los fluidos y otras son típicas de todas las sustancias. Características como la viscosidad, tensión superficial y presión de vapor solo se pueden definir en los líquidos y gasas. Sin embargo la masa específica, el peso específico y la densidadson atributos de cualquier materia.

1.3.1 Masa especifica, peso específico y densidad.

Se denomina masa específica a la cantidad de materia por unidad de volumen de una sustancia. Se designa por P y se define: P = lim ( m/ v)

v->0

El peso específico corresponde a la fuerza con que la tierra atrae a una unidad de volumen. Se designa por ß. La masa y el peso específico están relacionados por:

ß = gP

Donde g representa la intensidad del campo gravitacional.

Se denomina densidad a la relación que exista entre la masa específica de una sustancia cualquiera y una sustancia de referencia. Para los líquidos se utiliza la masa especifica del agua a 4°C como referencia, que corresponde a 1g/cm3 y para los gases se utiliza al airecon masa especifica a 20°C 1 1,013 bar de presión es 1,204 kg/m3.

1.3.2 Viscosidad.

La viscosidad es una propiedad distintiva de los fluidos. Esta ligada a la resistenciaque opone un fluido a deformarse continuamente cuando se le somete a un esfuerzo de corte. Esta propiedad es utilizada para distinguir el comportamiento entre fluidos y sólidos. Además los fluidos pueden ser en general clasificados de acuerdo a la relación que exista entre el esfuerzo de corte aplicado y la velocidad de deformación.

Supóngase que se tiene un fluido entre dos placas paralelas separada a una distancia pequeña entre ellas, una de las cuales se mueve con respecto de la otra. Esto es lo que ocurre aproximadamente en un descanso lubricado. Para que la palca superior se mantenga en movimiento con respecto ala inferior, con una diferencia de velocidades V, es necesario aplicar una fuerza F, que por unidad se traduce en un esfuerzo de corte, ŋ = F / A, siendo A el área de la palca en contacto con el fluido. Se puede constatar además que el fluido en contacto con la placa inferior, que esta en reposo, se mantiene adherido a ella y por lo tanto no se mueve. Por otra parte, el fluido en contacto con la placa superior se mueve ala misma velocidad que ella. Si el espesor del fluido entre ambas placas es pequeño, se puede suponer que la variación de velocidades en su interior es lineal, de modo que se mantiene la proporción:

dv / dy = V/y

1.3.3 Compresibilidad.

La compresibilidad representa la relación entre los cambios de volumen y los cambios de presión a que esta sometido un fluido. Las variaciones de volumen pueden relacionarse directamente con variaciones de la masa específica si la cantidad de masa permanece constante. En general se sabe que en los fluidos la masa especifica depende tanto de la presión como de la temperatura de acuerdo a al ecuación de estado.

1.3.4 Presión de vapor.

Los fluidos en fase liquida o gaseosa dependiendo de las condiciones en que se encuentren. Las sustancias puras pueden pasar por las cuatro fases, desde sólido a plasma, según las condiciones de presión y temperatura a que estén sometidas. Se acostumbra designar líquidos a aquellos materias que bajo las condicione normales de presión y temperatura en que se encuentran en la naturaleza están en esa fase.

Cuando un liquido se le disminuye la presión a la que esta sometido hasta llegar a un nivel en el que comienza a bullir, se dice que alcanzado la presión de vapor. Esta presión depende de la temperatura. Así por ejemplo, para el agua a 100°C, la presión es de aproximadamente de 1 bar, que equivale a una atmósfera normal. La presión de vapor y la temperatura de ebullición están relacionadas y definen una línea que separa y el líquido de una misma sustancia en un grafico de presión y temperatura.

Para ver el gráfico seleccione la opción "Descargar" del menú superior

Fig. 04. Presión de vapor y temperatura de ebullición para el caso del agua.

1.3.5 Tensión superficial.

Se ha observado que entre la interfase de dos fluidos que no se mezclan se comportan como si fuera una membrana tensa. La tensión superficial es la fuerza que se requiere para mantener en equilibriouna longitud unitaria de esta película. El valorde ella dependerá de los fluidos en contacto y de la temperatura. Los efectos de la superficial solo apreciables en fenómenos de pequeñas dimensiones, como es el caso de tubos capilares, burbujas, gotas y situaciones similares.

Según Bonifacio Fernández L. Las propiedades de los fluidos se dividen en extensivas y mecánicas; de las cuales se derivan otras tomando en cuenta diversos factores.

Según el autor Bonifacio Larrañaga Fernández las propiedades de los fluidos son:

Peso especifico. Tensión

Viscosidad Compresibilidad

Presión

1.4 PRINCIPIO DE ARQUIMIDES

El principio de Arquímedes afirma que todo cuerpo sumergido en un fluido experimenta una fuerza hacia arriba igual al peso del volumen de fluido desplazado por dicho cuerpo. Esto explica por qué flota un barco muy cargado; el peso del agua desplazada por el barco equivale a la fuerza hacia arriba que mantiene el barco a flote.

El punto sobre el que puede considerarse que actúan todas las fuerzas que producen el efecto de flotación se llama centro de flotación, y corresponde al centro de gravedad del fluido desplazado. El centro de flotación de un cuerpo que flota está situado exactamente encima de su centro de gravedad. Cuanto mayor sea la distancia entre ambos, mayor es la estabilidad del cuerpo.

El principio de Arquímedes permite determinar la densidad de un objeto cuya forma es tan irregular que su volumen no puede medirse directamente. Si el objeto se pesa primero en el aire y luego en el agua, la diferencia de peso será igual al peso del volumen de agua desplazado, y este volumen es igual al volumen del objeto, si éste está totalmente sumergido. Así puede determinarse fácilmente la densidad del objeto (masa dividida por volumen) Si se requiere una precisión muy elevada, también hay que tener en cuenta el peso del aire desplazado para obtener el volumen y la densidad correctos.

Para el autor John Muller, Arquímedes fuel mas grande investigador de mecánica de fluidos de todos los tiempos; ya que el fue quien descubrió las propiedades de los fluidos sometidos a diversas circunstancias. Además el desarrollocomo nadie mas, le mayor numero de postulados fundamentales acerca del tema.

CONCLUSIONES

Para el autor Fay A. James un fluido es una sustancia que escurre o se deforma continuamente, cuando esta sometido a un esfuerzo de corte tangencial en reposo solo soporta esfuerzos normales.

La mecánica de los fluidos estudia el comportamiento de estos como un medio continuó, sin considerar lo que ocurre a nivel de sus moléculas. Se definen como propiedades intensivas a las que no dependen de la cantidad de materia comprometida, y extensivas a las que dependen.

Para cuantificar el comportamiento de los fluidos se utiliza n ciertas magnitudes de referencia para las dimensiones básicas. Para ello se utiliza él Sistema Internacional de Medidas, el cual se basa en el sistema MKS. Las unidades básicas son: el metro, el segundo, el kilogramo y el grado kelvin. La unidad de fuerza es el newton.

Los fluidos tienen dos propiedades mecánicas: masa específica y peso específico. La propiedad más importante para los fluidos es la viscosidad, adema tiene otras propiedades como: la compresibilidad, calor específico y tensión superficial.

CONCLUSION PERSONAL.

El primer capitulo abordo los temas de sistema de unidades, propiedades de los fluidos y valores comunes; todos estos temas son la introducción principal para adentrarnos dentro de la mecánica de fluidos como estudio científico y académico, ya que se comienza con definición de que es lo que vamos a investigar, como se dimensiona, que características tiene y además que es lo que nos puede resultar al hacer cualquier experimento

ESTATICA DE FLUIDOS


2.1 INTRODUCCION

Según el investigador John Miller:"La estática de los fluidos estudia las condiciones de equilibrio bajo las cuales un fluido esta en reposo", sabiendo que para ello se requiere que todos los elementos que lo forman se muevan ala misma velocidad, es decir que no se desplacen los unos a los otros y por lo tanto no halla escurrimiento. El fluido esta entonces detenido o se mueve como si fuera un cuerpo rígido sin deformarse. La ausencia de escurrimiento, y por lo tanto de deformación angular, lleva implícita la ausencia de corte.

Bajo estas condiciones, sobre las superficies que están en contacto con el fluido solo se desarrollan esfuerzos normales. Debido a al ausencia de esfuerzos tangenciales la viscosidad no tiene importancia, de modo que los principios de la hidrostática son aplicable a cualquier tipo de fluido viscoso o real, ideal o perfecto.

2.2 ESTÁTICA DE FLUIDOS O HIDROSTÁTICA

Una característica fundamental de cualquier fluido en reposo es que la fuerza ejercida sobre cualquier partícula del fluido es la misma en todas direcciones. Si las fuerzas fueran desiguales, la partícula se desplazaría en la direcciónde la fuerza resultante. De ello se deduce que la fuerza por unidad de superficie —la presión— que el fluido ejerce contra las paredes del recipiente que lo contiene, sea cual sea su forma, es perpendicular a la pared en cada punto. Si la presión no fuera perpendicular, la fuerza tendría una componente tangencial no equilibrada y el fluido se movería a lo largo de la pared.

Este conceptofue formulado por primera vez en una forma un poco más amplia por el matemático y filósofo francés Blaise Pascalen 1647, y se conoce como principio de Pascal. Dicho principio, que tiene aplicaciones muy importantes en hidráulica, afirma que la presión aplicada sobre un fluido contenido en un recipiente se transmite por igual en todas direcciones y a todas las partes del recipiente, siempre que se puedan despreciar las diferencias de presión debidas al peso del fluido y a la profundidad.Cuando la gravedad es la única fuerza que actúa sobre un líquido contenido en un recipiente abierto, la presión en cualquier punto del líquido es directamente proporcional al peso de la columna vertical de dicho líquido situada sobre ese punto. La presión es a su vez proporcional a la profundidad del punto con respecto a la superficie, y es independiente del tamaño o forma del recipiente. Así, la presión en el fondo de una tubería vertical llena de agua de 1 cm. de diámetro y 15 m de altura es la misma que en el fondo de un lago de 15 m de profundidad. De igual forma, si una tubería de 30 m de longitud se llena de agua y se inclina de modo que la parte superior esté sólo a 15 m en vertical por encima del fondo, el agua ejercerá la misma presión sobre el fondo que en los casos anteriores, aunque la distancia a lo largo de la tubería sea mucho mayor que la altura de la tubería vertical. Veamos otro ejemplo: la masa de una columna de agua dulce de 30 cm. de altura y una sección transversal de 6,5 cm.2 es de 195 g, y la fuerza ejercida en el fondo será el peso correspondiente a esa masa. Una columna de la misma altura pero con un diámetro 12 veces superior tendrá un volumen 144 veces mayor, y pesará 144 veces más, pero la presión, que es la fuerza por unidad de superficie, seguirá siendo la misma, puesto que la superficie también será 144 veces mayor. La presión en el fondo de una columna de mercurio de la misma altura será 13,6 veces superior, ya que el mercurio tiene una densidad 13,6 veces superior a la del agua.

El segundo principio importante de la estática de fluidos fue descubierto por el matemático y filósofo griego Arquímedes. El principio de Arquímedes afirma que todo cuerpo sumergido en un fluido experimenta una fuerza hacia arriba igual al peso del volumen de fluido desplazado por dicho cuerpo. Esto explica por qué flota un barco muy cargado; el peso del agua desplazada por el barco equivale a la fuerza hacia arriba que mantiene el barco a flote.

El punto sobre el que puede considerarse que actúan todas las fuerzas que producen el efecto de flotación se llama centro de flotación, y corresponde al centro de gravedad del fluido desplazado. El centro de flotación de un cuerpo que flota está situado exactamente encima de su centro de gravedad. Cuanto mayor sea la distancia entre ambos, mayor es la estabilidad del cuerpo.

El principio de Arquímedes permite determinar la densidad de un objeto cuya forma es tan irregular que su volumen no puede medirse directamente. Si el objeto se pesa primero en el aire y luego en el agua, la diferencia de peso será igual al peso del volumen de agua desplazado, y este volumen es igual al volumen del objeto, si éste está totalmente sumergido. Así puede determinarse fácilmente la densidad del objeto (masa dividida por volumen) Si se requiere una precisión muy elevada, también hay que tener en cuenta el peso del aire desplazado para obtener el volumen y la densidad correctos.

CONCLUSIONES.

El autor John Muller deduce que: la estática de fluidos postula dos principios fundamentales mediante los cuales describe las características de los fluidos sometidos a diversos fenómenos como la presión atmosférica o la sumersión en líquido y los efectos colaterales que se producen al realizarlos.

CONCLUSION PERSONAL.

En el segundo capitulo se identifico ya un fenómeno propio de la mecánica de fluidos como es la estática o hidrostática de fluidos en la cual intervienen una presión atmosférica o ya sea bien un liquido.

En los dos casos se va dar un fenómeno de movimiento el cual se denomina movimiento dinámico o hidrostático. También se mencionaron los precursores de estas investigaciones donde figuran nombres como el de Arquímedes y Blaise Pascal principalmente.

DINAMICA DE FLUIDOS

3.1 INTRODUCCION

Para el autor Gareth Williams la dinámica de fluidos se centra principalmente a determinar la fricción que ofrece el mismo dependiendo del grado de viscosidad del mismo. Los fluidos ideales cuya viscosidad es nula o despreciable, en su comportamiento no se observa esfuerzos de corte y por lo tanto no existen fuerzas de fricción con las paredes de los sólidos.

En este capitulo se mencionaran las obras de Euler y Torricelli , quienes fueron los que contribuyeron al desarrollo de la dinámica de fluidos moderna.

3.2 DINÁMICA DE FLUIDOS O HIDRODINÁMICA

Esta rama de la mecánica de fluidos se ocupa de las leyes de los fluidos en movimiento; estas leyes son enormemente complejas, y aunque la hidrodinámica tiene una importancia práctica mayor que la hidrostática, sólo podemos tratar aquí algunos conceptos básicos.

El interéspor la dinámica de fluidos se remonta a las aplicaciones más antiguas de los fluidos en ingeniería. Arquímedes realizó una de las primeras contribuciones con la invención, que se le atribuye tradicionalmente, del tornillo sin fin. La acción impulsora del tornillo de Arquímedes es similar a la de la pieza semejante a un sacacorchos que tienen las picadoras de carne manuales. Los romanos desarrollaron otras máquinas y mecanismos hidráulicos; no sólo empleaban el tornillo de Arquímedes para bombear agua en agricultura y minería, sino que también construyeron extensos sistemas de acueductos, algunos de los cuales todavía funcionan. En el siglo I a.C., el arquitecto e ingeniero romano Vitrubio inventó la rueda hidráulica horizontal, con lo que revolucionó la técnica de moler grano.

A pesar de estas tempranas aplicaciones de la dinámica de fluidos, apenas se comprendía la teoría básica, por lo que su desarrollo se vio frenado. Después de Arquímedes pasaron más de 1.800 años antes de que se produjera el siguiente avance científico significativo, debido al matemático y físico italiano Evangelista Torricelli, que inventó el barómetro en 1643 y formuló el teorema de Torricelli, que relaciona la velocidad de salida de un líquido a través de un orificio de un recipiente, con la altura del líquido situado por encima de dicho agujero. El siguiente gran avance en el desarrollo de la mecánica de fluidos tuvo que esperar a la formulación de las leyes del movimiento por el matemático y físico inglés Isaac Newton. Estas leyes fueron aplicadas por primera vez a los fluidos por el matemático suizo Leonhard Euler, quien dedujo las ecuaciones básicas para un fluido sin rozamiento (no viscoso).

Euler fue el primero en reconocer que las leyes dinámicas para los fluidos sólo pueden expresarse de forma relativamente sencilla si se supone que el fluido es incompresible e ideal, es decir, si se pueden despreciar los efectos del rozamiento y la viscosidad. Sin embargo, como esto nunca es así en el caso de los fluidos reales en movimiento, para Gareth Williams los resultados de dicho análisis sólo pueden servir como estimación para flujos en los que los efectos de la viscosidad son pequeños.

3.2.1 Flujos incompresibles y sin rozamiento

Estos flujos cumplen el llamado teorema de Bernoulli, enunciado por el matemático y científico suizo Daniel Bernoulli. El teorema afirma que la energía mecánica total de un flujo incompresible y no viscoso (sin rozamiento) es constante a lo largo de una línea de corriente. Las líneas de corriente son líneas de flujo imaginarias que siempre son paralelas a la dirección del flujo en cada punto, y en el caso de flujo uniforme coinciden con la trayectoria de las partículas individuales de fluido. El teorema de Bernoulli implica una relación entre los efectos de la presión, la velocidad y la gravedad, e indica que la velocidad aumenta cuando la presión disminuye. Para el autor John Muller: "Este principio es importante para la medida de flujos, y también puede emplearse para predecir la fuerza de sustentación de un ala en vuelo.

CONCLUSIONES

En el caso de la dinámica de fluidos, el autor R.L Street.menciona que: "las únicas fuerzas de superficie son las provocadas por la presión, que sumadas a las demás fuerzas, o de gravedad, son las responsables del movimiento del fluido". Bajo estas condicione Newton represento su segunda ley, aplicada a un elemento fluido, o ecuación de cantidad de movimiento, la que se conoce como ecuación de Euler.

CONCLUSION PERSONAL.

La dinámica o hidrodinámica de fluidos ya comprenden cálculos matemáticos mediante formulas complejas, las cuales corresponderán a movimientos de flujos sin comprimir. De aquí se deriva una ramificación de la dinámica y así mismo de la mecánica de fluidos: el flujo incompresible y sin rozamiento, el cual es experimentado por la segunda ley de Newton; pero además ya participan mayor numero de investigadores acerca del tema (Bernouilli, Evangelista, Torricelli, Pascal, etc).

Al final se deduce que la gravedad junto con otras fuerzas influye para que haya movimiento de un flujo.

ANALISIS PUNTUAL

DEL COMPORTAMIENTO DINAMICO DE LOS FLUIDOS

4.1 INTRODUCCION

En opinión del autor Fernández Larrañaga: "El análisis puntual esta orientado a establecer un modelo matemático del comportamiento del fluido, lo que permita conocer a detalle lo que ocurre en cada punto, para ello se establece ecuaciones básicas. Con base en ello se podrá conocer la distribución espacial y temporal de las variables que definen el comportamiento del fluido, como son la presión, velocidad, masa específica entre otras".

El análisis requiere mayor esfuerzo pero entrega más información sobre el comportamiento del fluido.

4.2 EL TEOREMA DE BERNOULLI

Una de las leyes fundamentales que rigen el movimiento de los fluidos es el teorema de Bernoulli, que relaciona un aumento en la velocidad de flujo con una disminución de la presión y viceversa. El teorema de Bernoulli explica, por ejemplo, la fuerza de sustentación que actúa sobre el ala de un avión en vuelo. Un ala —o plano aerodinámico— está diseñada de forma que el aire fluya más rápidamente sobre la superficie superior que sobre la inferior, lo que provoca una disminución de presión en la superficie de arriba con respecto a la de abajo. Esta diferencia de presiones proporciona la fuerza de sustentación que mantiene el avión en vuelo. Los coches de carrera son muy bajos con el fin de que el aire se desplace a gran velocidad por el estrecho espacio entre la carrocería y el suelo. Esto reduce la presión debajo del vehículo y lo aprieta con fuerza hacia abajo, lo que mejora el agarre. Estos coches también llevan en su parte trasera un plano aerodinámico con forma de ala invertida para aumentar la fuerza contra el suelo. La vela de un balandro en movimiento también constituye un plano aerodinámico. Otro aspecto importante de la aerodinámica es la resistencia al avance que experimentan los objetos sólidos que se mueven a través del aire. Por ejemplo, las fuerzas de resistencia que ejerce el aire que fluye sobre un avión deben ser superadas por el empuje del reactor o de las hélices. La resistencia al avance puede reducirse significativamente empleando formas aerodinámicas. Según el autor James A. Fay: "Cuando el objeto no es totalmente aerodinámico, la resistencia aumenta de forma aproximadamente proporcional al cuadrado de su velocidad con respecto al aire". Por ejemplo, la potencianecesaria para propulsar un coche que avanza de forma uniforme a velocidades medias o altas se emplea fundamentalmente en superar la resistencia del aire.

4.3 FLUJOS VISCOSOS: MOVIMIENTO LAMINAR Y TURBULENTO

Los primeros experimentos cuidadosamente documentados del rozamiento en flujos de baja velocidad a través de tuberías fueron realizados independientemente en 1839 por el fisiólogo francés Jean Louis Marie Poiseuille, que estaba interesado por las características del flujo de la sangre, y en 1840 por el ingeniero hidráulico alemán Gotthilf Heinrich Ludwig Hagen. El primer intento de incluir los efectos de la viscosidad en las ecuaciones matemáticasse debió al ingeniero francés Claude Louis Marie Navier en 1827 e, independientemente, al matemático británico George Gabriel Stokes, quien en 1845 perfeccionó las ecuaciones básicas para los fluidos viscosos incompresibles. Actualmente se las conoce como ecuaciones de Navier-Stokes, y son tan complejas que sólo se pueden aplicar a flujos sencillos. Uno de ellos es el de un fluido real que circula a través de una tubería recta. El teorema de Bernoulli no se puede aplicar aquí, porque parte de la energía mecánica total se disipa como consecuencia del rozamiento viscoso, lo que provoca una caída de presión a lo largo de la tubería. Las ecuaciones sugieren que, dados una tubería y un fluido determinados, esta caída de presión debería ser proporcional a la velocidad de flujo. Los experimentos realizados por primera vez a mediados del siglo XIX demostraron que esto sólo era cierto para velocidades bajas; para velocidades mayores, la caída de presión era más bien proporcional al cuadrado de la velocidad. Este problema no se resolvió hasta 1883, cuando el ingeniero británico Osborne Reynolds demostró la existencia de dos tipos de flujo viscoso en tuberías. A velocidades bajas, las partículas del fluido siguen las líneas de corriente (flujo laminar), y los resultados experimentales coinciden con las predicciones analíticas. A velocidades más elevadas, surgen fluctuaciones en la velocidad del flujo, o remolinos (flujo turbulento), en una forma que ni siquiera en la actualidad se puede predecir completamente. Reynolds también determinó que la transición del flujo laminar al turbulento era funciónde un único parámetro, que desde entonces se conoce como número de Reynolds. Si el número de Reynolds —que carece de dimensiones y es el producto de la velocidad, la densidad del fluido y el diámetro de la tubería dividido entre la viscosidad del fluido— es menor de 2.100, el flujo a través de la tubería es siempre laminar; cuando los valoresson más elevados suele ser turbulento. El concepto de número de Reynolds es esencial para gran parte de la moderna mecánica de fluidos.

Según James A. Fay: "Los flujos turbulentos no se pueden evaluar exclusivamente a partir de las predicciones calculadas, y su análisis depende de una combinación de datos experimentales y modelos matemáticos"; gran parte de la investigaciónmoderna en mecánica de fluidos está dedicada a una mejor formulación de la turbulencia. Puede observarse la transición del flujo laminar al turbulento y la complejidad del flujo turbulento cuando el humo de un cigarrillo asciende en aire muy tranquilo. Al principio, sube con un movimiento laminar a lo largo de líneas de corriente, pero al cabo de cierta distancia se hace inestable y se forma un sistema de remolinos entrelazados.

Para ver el gráfico seleccione la opción "Descargar" del menú superior

Flujo principal Remolinos Flujo turbulento.

.3.1 FLUJOS DE LA CAPA LÍMITE

Antes de 1860, aproximadamente, el interés de la ingeniería por la mecánica de fluidos se limitaba casi exclusivamente al flujo del agua. El desarrollo de la industria química durante la última parte del siglo XIX dirigió la atención a otros líquidos y a los gases. El interés por la aerodinámica comenzó con los estudios del ingeniero aeronáutico alemán Otto Lilienthal en la última década del siglo XIX, y produjo avances importantes tras el primer vuelo con motor logrado por los inventores estadounidenses Orville y Wilbur Wright en 1903.

La complejidad de los flujos viscosos, y en particular de los flujos turbulentos, restringió en gran medida los avances en la dinámica de fluidos hasta que el ingeniero alemán Ludwig Prandtl observó en 1904 que muchos flujos pueden separarse en dos regiones principales. La región próxima a la superficie está formada por una delgada capa límite donde se concentran los efectos viscosos y en la que puede simplificarse mucho el modelo matemático. Fuera de esta capa límite, se pueden despreciar los efectos de la viscosidad, y pueden emplearse las ecuaciones matemáticas más sencillas para flujos no viscosos. Para el autor J.K Vernard: "La teoría de la capa límite ha hecho posible gran parte del desarrollo de las alas de los aviones modernos y del diseño de turbinas de gas y compresores". El modelo de la capa límite no sólo permitió una formulación mucho más simplificada de las ecuaciones de Navier-Stokes en la región próxima a la superficie del cuerpo, sino que llevó a nuevos avances en la teoría del flujo de fluidos no viscosos, que pueden aplicarse fuera de la capa límite. Gran parte del desarrollo moderno de la mecánica de fluidos, posibilitado por el concepto de capa límite, se ha debido a investigadores como el ingeniero aeronáutico estadounidense de origen húngaro Theodore von Kármán, el matemático alemán Richard von Mises y el físico y meteorólogo británico Geoffrey Ingram Taylor.

4.3.2 FLUJOS COMPRESIBLES

El interés por los flujos compresibles comenzó con el desarrollo de las turbinas de vapor por el inventor británico Charles Algernon Parsons y el ingeniero sueco Carl Gustaf Patrik de Laval durante la década de 1880. En esos mecanismos se descubrió por primera vez el flujo rápido de vapor a través de tubos, y la necesidad de un diseño eficiente de turbinas llevó a una mejora del análisis de los flujos compresibles. Pero los avances modernos tuvieron que esperar al estímulo que supuso el desarrollo de la turbina de combustión y la propulsión a chorro en la década de 1930. El interés por los flujos de alta velocidad sobre superficies surgió de forma temprana en los estudios de balística, donde se necesitaba comprender el movimiento de los proyectiles. Los avances más importantes comenzaron hacia el final del siglo XIX, con Prandtl y sus discípulos, entre otros, y crecieron con la introducción de los aviones de alta velocidad y los cohetes en la II Guerra Mundial.

El autor Gareth Williams lo fundamental de flujos compresibles lo deduce:

Uno de los principios básicos del flujo compresible es que la densidad de un gas cambia cuando el gas se ve sometido a grandes cambios de velocidad y presión. Al mismo tiempo, su temperatura también cambia, lo que lleva a problemas de análisis más complejos. El comportamiento de flujo de un gas compresible depende de si la velocidad de flujo es mayor o menor que la velocidad del sonido. El sonido es la propagación de una pequeña perturbación, u onda de presión, dentro de un fluido. Para un gas, la velocidad del sonido es proporcional a la raíz cuadrada de su temperatura absoluta. La velocidad del sonido en el aire a 20 °C (293 kelvins en la escala absoluta), es de unos 344 metros por segundo. Si la velocidad de flujo es menor que la velocidad del sonido (flujo subsónico), las ondasde presión pueden transmitirse a través de todo el fluido y así adaptar el flujo que se dirige hacia un objeto. Por tanto, el flujo subsónico que se dirige hacia el ala de un avión se ajustará con cierta distancia de antelación para fluir suavemente sobre la superficie. En el flujo supersónico, las ondas de presión no pueden viajar corriente arriba para adaptar el flujo. Por ello, el aire que se dirige hacia el ala de un avión en vuelo supersónico no está preparado para la perturbación que va a causar el ala y tiene que cambiar de dirección repentinamente en la proximidad del ala, lo que conlleva una compresión intensa u onda de choque. El ruido asociado con el paso de esta onda de choque sobre los observadores situados en tierra constituye el estampido sónico de los aviones supersónicos. Frecuentemente se identifican los flujos supersónicos por su número de Mach, que es el cociente entre la velocidad de flujo y la velocidad del sonido. Por tanto, los flujos supersónicos tienen un número de Mach superior a 1.

CONCLUSIONES

La aplicación de las ecuaciones de Euler en régimen permanente se simplifica si se integran. Con el objeto de establecer claramente las condiciones bajo las cuales esta ecuación es aplicable, se procedió a su deducción por dos caminos: el uso de coordenadas naturales y cartesianas.

El teorema de Bernoulli explica la relación existente entre el aumento de velocidad en un flujo con una disminución de la presión y viceversa, locuaz proporciona una diferencia de presiones.

El flujo turbulento es un escurrimiento desordenado que se produce el aumentar el numerote Reynolds.

Del flujo compresible se deduce que la densidad de un gas cambia cuando el gas esta sometido a grandes cambios de velocidad y presión.

CONCLUSION PERSONAL.

Para poderacabo cálculos acerca de la mecánica de fluidos es necesario analizar la situación de la cual se quieren realizar dichos cálculos. El análisis consta de leyes, procedimientosy conceptos que se tienen que conocer para realizar una estimación acertada de los cálculos a realizar. En este capitulo se mencionaron de cuatro términos fundamentales par llevar acabo dicho análisis:

El teorema de Bernoulli.

Es la ley fundamental que rige el movimiento de los fluidos, relacionada con la velocidad y la presión del mismo.

Flujos Viscosos.

Por medio de experimentación se deduce las dos características del flujo viscoso: el movimiento laminar, que depende de las corrientes de flujo y el movimiento turbulento que se da por la velocidad del flujo.

Flujos de capa limite

Propiedad de los fluidos descubierta por el alemán Ludwig Prandtl que menciona que los flujos pueden separarse en dos regiones principales.

Flujos compresibles

Principio relacionado a los gases y sus propiedades como densidad, velocidad y presión.

APLICACIONES Y RAMAS DE LA MECANICA DE FLUIDOS

5.1 INTRODUCCION

La mecánica de fluidos se ha dividido en diferentes ramas que cubren diferente aspectos de la ingeniería, la física, las matemáticas, etc. Están destinadas a solucionar problemas de la vida cotidiana así como para desarrollar nueva tecnologíay descubrir nuevos campos de la ciencia.

Para Vernard J.K. las aplicaciones de la mecánica de fluidas se pueden en un número infinito, ya que todo depende de los fluidos, directa e indirectamente. Un ejemplo palpable para demostrar tal afirmación es el suponer que la tierra esta conformada de un 75% de agua.

5.2 AERODINAMICA

Rama de la mecánica de fluidos que se ocupa del movimiento del aire y otros fluidos gaseosos, y de las fuerzas que actúan sobre los cuerpos que se mueven en dichos fluidos. Algunos ejemplos del ámbito de la aerodinámica son el movimiento de un avión a través del aire, las fuerzas que el viento ejerce sobre una estructura o el funcionamiento de un molino de viento.

Todos los temas que se mencionaron anteriormente y que se relacionan con la aerodinámica, son las ramas que se derivan de la misma y que se deben de revisar para lograr un estudio amplio y completo de los fenómenos aerodinámicos ; y por lo tanto ,lograr englobar todos estos conceptos y sus aplicaciones ,enfocados hacia la mecánica de fluidos.

El investigador Fernández Larrañaga dice: "La aerodinámica es la principal aplicación de la mecánica de fluidos inducidos hacia el campo de los flujos con rozamiento, con gases específicamente".

5.3 SUPERSÓNICA

La supersónica, una rama importante de la aerodinámica, se ocupa de los fenómenos que tienen lugar cuando la velocidad de un sólido supera la velocidad del sonido en el medio —generalmente aire— en que se desplaza.

La velocidad del sonido en la atmósfera varía según la humedad, la temperatura y la presión. Como la velocidad del sonido es un factor crucial en las ecuaciones aerodinámicas y no es constante, suele emplearse el número de Mach, así llamado en honor del físico y filósofo austriaco Ernst Mach, un pionero en el estudio de la balística. El número de Mach es la velocidad respecto a la atmósfera del proyectil o el avión dividida entre la velocidad del sonido en el mismo medio y con las mismas condiciones. Así, al nivel del mar, en condiciones normales de humedad y temperatura, una velocidad de 1.220 km/h representa un número de Mach de 1. En la estratosfera, debido a las diferencias de densidad, presión y temperatura, esta misma velocidad correspondería a un número de Mach de 1,16. Expresando las velocidades por su número de Mach, en vez de en kilómetros por hora, puede obtenerse una representación más exacta de las condiciones que se dan realmente durante el vuelo.

5.4 ONDAS DE CHOQUE

Los estudios mediante observaciones ópticas de proyectiles de artillería revelan la naturaleza de las perturbaciones atmosféricas encontradas durante el vuelo. A velocidades subsónicas, por debajo de Mach 0,85, la única perturbación atmosférica es una turbulencia en la estela del proyectil. En la zona transónica, entre Mach 0,85 y Mach 1,3, aparecen ondas de choque a medida que aumenta la velocidad; en el rango más bajo de esa zona de velocidades, las ondas de choque surgen de cualquier protuberancia abrupta en el contorno suave del proyectil. Cuando la velocidad supera Mach 1, las ondas de choque surgen de la parte delantera y la cola y se propagan en forma de cono desde el proyectil. El ángulo del cono es tanto menor cuanto mayor es la velocidad del proyectil. Así, a Mach 1, la onda es esencialmente un plano; a Mach 1,4 (1.712 Km. /h al nivel del mar), el ángulo del cono es de aproximadamente 90°; a Mach 2,48 (unos 3.030 Km. /h), la onda de choque procedente del proyectil tiene un ángulo cónico ligeramente menor de 50°. La investigación en este campo ha permitido el diseño de los modernos aviones de gran velocidad, en los que las alas se inclinan hacia atrás formando ángulos de hasta 60° para evitar la onda de choque procedente de la parte delantera del avión.

Las ondas de choque son el principal campo de estudio del el autor Jerry D. Wilson dentro de la mecánica de fluidos, ya que según el autor es donde tiene mayor implicación con la tecnología aeronáutica moderna y toda la tecnología que conlleva el estudio de su realización.

5.5 MAXIMIZACION DE LA EFICIENCIA

Entre otros factores estudiados por la investigación sobre proyectiles de artillería supersónicos figuran la forma ideal de los proyectiles y el comportamiento de un gas que fluye a altas velocidades. La llamada forma de gota, que es la forma aerodinámica ideal para velocidades subsónicas, es muy poco eficaz en la zona supersónica debido a su gran superficie frontal, que comprime el aire y da lugar a ondas de choque de gran amplitud que absorben mucha energía.

Cuando un gas fluye por un tubo estrechado, como la tobera de un cohete, a velocidades subsónicas, la velocidad de flujo aumenta y la presión disminuye en el cuello del estrechamiento. A velocidades supersónicas se produce el fenómeno inverso, y la velocidad de flujo aumenta en un tubo divergente. Así, los gases de escape de un cohete, al acelerarse en la tobera hasta la velocidad del sonido, aumentan aún más su velocidad, y por tanto su empuje, en el ensanchamiento divergente de la tobera, con lo que se multiplica la eficienciadel cohete. Otro factor que los diseñadores de cohetes conocen desde hace tiempo es la influencia directa de la presión atmosférica reinante sobre la eficiencia del vuelo a velocidades supersónicas. Cuanto más próximo esté el medio circundante a un vacío perfecto, más eficiente es el motor del avión o el cohete. El rango de velocidades de un avión supersónico también puede aumentarse reduciendo la superficie, o sección transversal, que presenta al aire. En los aviones que operan a velocidades supersónicas es imprescindible aumentar el peso del aparato aumentando su longitud, hacerlo más esbelto y dotarlo de un frente en forma de aguja. En los años posteriores a la II Guerra Mundial, los centros de investigación en aerodinámica construyeron túneles de viento donde se podían probar maquetas o piezas de aviones en corrientes de aire supersónicas.

5.6 REGLA DE LAS SUPERFICIES

Un importante avance en la aeronáutica, gracias a las investigaciones en túneles de viento, se debió al físico estadounidense Richard Travis Whitcomb, que descubrió la regla de las superficies para el diseño de aviones supersónicos. Según este principio, el aumento abrupto en la resistencia al avance que se produce a velocidades transónicas se debe a la distribución de la superficie total de la sección transversal en cada punto del avión. Estrechando el fuselaje en la zona donde está unido a las alas, la reducción en la sección transversal total del fuselaje y las alas disminuye la resistencia al avance del aparato. El diseño de Whitcomb, llamado de talle de avispa, hizo posible un aumento del 25% en el rango de velocidades supersónicas sin necesidad de una mayor potencia en los motores.

En el pasado se utilizaba el término supersónica en un sentido más amplio, e incluía la rama de la física ahora conocida como ultrasónica, que se ocupa de las ondas de sonido de alta frecuencia, generalmente por encima de los 20.000 hercios (Hz).

CONCLUSIONES

Las principales ramas de la mecánica de fluidos son la aerodinámica, supersónica entre otras, además de diversos conceptos como. Las ondas de choque y la maximización de la eficiencia.

Según Jerry D. Wilson la mecánica de fluidos es tan extensa como el numero de líquidos y fluidos que conozcamos en nuestro entorno; ya que según el enfoque que se le de al estudio de dicho fluido dependerá también las ramificaciones que se deriven de este tema que se halla escogido.

CONCLUSION PERSONAL.

Las aplicaciones de la mecánica de fluidos son muy diversas, pero como se mostró en este ultimo capitulo se emplean mas en aeronáutica, construcciónde navíos, compresores, maquinaria industrial, mecanismos neumáticos e hidráulicos, etc.

Pero en general en cualquier parte donde se tenga un fluido se podrán aplicar los términos y conceptos que para el tema estén desarrollados.

BIBLIOGRAFIA.

INTRODUCCION A LA MECANICA DE FLUIDOS.

2da. Edición.

Fernández Larrañaga Bonifacio.

Alfa omega Grupo Editorial.

México 1999.

MECANICA DE FLUIDOS.

Fay A. James

Editorial CECSA Cuarta Edición

México 1995

ELEMENTOS DE MECANICADE FLUIDOS.

Vernard J.K, Street R.L.

Tercera Edición Versión 51

Editorial CECSA

España 1998

FUNDAMENTOS BASICOS DE MECANICA DE FLUIDOS.

Williams, Gareth

Tercera Edición Editorial Mc Graw Hill Interamericana

México 1996

LA MECANICA DE FLUIDOS, APLICACIONES E IMPLICACIONES.

Wilson D. Jerry

Segunda Edición Editorial Prentice Hall

Chile 1994

LA MECANICA DE FLUIDOS

Muller John

Tercera Edición Editorial CECSA

México 1993

PAGINAS DE INTERNET.

http:\www.encarta.com

www.monografias.com

www.dibujo.com

REVISTAS

Mecánica Popular

Edición



CENTRALES HIDROELECTRICAS


jueves, 16 de septiembre de 2010

Principales problemas sociales en el Peru.

Perú, pobreza, desigualdad social, desempleo y centralización



El Perú es una república democrática que ha iniciado este año un proceso de reestructuramiento estatal con el fin de descentralizar las actividades políticas y económicas que afectan claramente la pobreza y la desigualdad social. Así, desde el 1 de enero de 2003, se encuentra dividido en 25 regiones que agrupan entornos y grupos humanos culturalmente distintos. Este proceso de descentralización y las condiciones de pobreza conforman el contexto que exige un mejor aprovechamiento de los recursos disponibles para continuar con el desarrollo del país.

El Perú es un país con un área de 1'285,215 km. con tres regiones naturales (costa, sierra y selva) que establecen condiciones de vida y procesos culturales fuertemente diferenciados entre sí. Según los últimos datos publicados por el Instituto Nacional de Estadística e Informática (INEI)1, en el año 2000 el número total de habitantes ascendía a 25,662 millones, con una ligera mayoría de mujeres (50.4%) y una esperanza de vida de 69 años. Los resultados evidencian que el 72.3% de la población vive en zonas urbanas y el 27.7% en zonas rurales. Si bien la mayoría habla castellano (80.3%), casi un 20% habla quechua, aymara u otras lenguas nativas.
Por ello compatriotas, nosotros podemos solucionar este gran probla, que traemos arrastrando de tiempos remotos.
ya estamos canzados de escuchar promesas de sujetos "politicos" que jamas van a solucionarla.
Tenemos que tomar conciencia, y ello se consigue con un estudio minucioso del pr qué, claro que es evidente la respuesta ; no obstante, hay muchas personas que todavia ignora de este "capitulo".
Vivimos en un mundo globalizado...¿pero la globalizacion a quien favorece?
hemos recebido grandes mensajes del gobierno de turno, en la cual nos proponia claramente que este atributo ayudaria mucho al Perú.
Muchas persoans se han enrequecido con este fenomeno en el Perú; pero los pobres nos hacemos mas pobres. acaso no somos peruanos?
¿entonces  a quien se referia ese títere cuando decia :"el Perú está yendo por buen camino"?

Un problema que podemos resaltar tambien es la descentralizacion, producto de ello la capital del Perú se encuentra afectada. en el cual pues los migrantes no reciben el apoyo correspondiente de parte del gobierno. Nos hablan de que los niños son el futuro del pais... pero ¿qué futuro tendrá si no recibimos ni siquiera una buena educacion?..